
NOTATION 

c~, heat transfer coefficient, W/(m2.K); q, heat flux density, W/m2; T, t, temperature of the medium, deg K; W, 
velocity of the medium, m/s; L, length of tube, m; d, diameter of tube, m; 8, thickness, m; R, radius, m. The 
dimensionless groups: Ref = --gl/r#. Subscripts: v, vapor flow; f, film of liquid; 0, initial value of a parameter; int, 
internal; A, differences; s, saturation; d, drop. 
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SOLUTION OF THE INVERSE PROBLEM ON DETERMINING THREE 

FIBER COMPOSITE CHARACTERISTICS 

I. V. Goncharov and V. L. Mikov UDC 536.24 

A method is proposed to determine the characteristics of  a bonded composite: the fiber and matrix heat 
conductivity coefficients and the heat transfer coefficient between them, from the solution of  the inverse 
problem of heat conduction. 

Extended utilization of bonded composite materials evokes the necessity to investigate heat propagation processes 
in such media. From the thermophysical viewpoint, these materials are quite definitely of heterogeneous configuration 
[I]. The matrix can be considered homogeneous and isotropic while the bonding fiber in a beam or rod in structure is 
highly anisotropic. Under nonstationary heat transfer conditions, different thermophysical characteristics (TPC) of the 
material components specify their distinct temperature, that appears especially strongly in the composite surface layer 
[2, 3]. 

A multitemperature theory of heat conduction [4] has been developed to model heat transport processes in 
heterogeneous media. Taking the average of the temperature field over the section of each component results in a system 
of interrelated heat conduction equations that is closed by using the Henry law that sets up a connection between the 
thermal flux density between the components qij and their mean temperatures 

q~y _ ~ ( ~ _  ~,). (1) 

The practical lack of data about the TPC of the components and a hinders extensive utilization of the multitemperature 
theory. 

When producing methods and apparatus to determine fiber and matrix TPC the tendency to raise the 
informativity [5] that is achieved by the development of fast-response, highly productive methods of complex nature 
that give information about a set of properties from one experiment should be taken into account. The possibility is 
examined in this paper, of determining the fiber and matrix heat conduction coefficients as well as the heat transfer 
coefficient between them from thermograms of a pulse experiment (the "laser burst" method). 

The "burst" method was developed to determine the thermal diffusivlty and specific heat coefficients of 
homogeneous materials [6] under the assumption that the TPC of the material are independent of the temperature. At 
this time it is utilized to determine the effective thermal diffusivity coefficients of definite classes of heterogeneous 
media [7]. Distinctive features of the method are the rapidity of executing an experiment and the accuracy that is 
associated with determining the relative and not the absolute quantities. The time behavior of the relative temperature 
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Fig. 1. Characteristic thermogram of  an impulse experiment. 

Fig. 2. Representative volume of a unidirectional f iber composite. 

of the specimen reverse surface after  the action of  a laser pulse on the forward surface can be obtained as a result of 
experiment (Fig. 1). The time dependence T(t) contains information about the TPC of the composite componen:s, whose 
extraction demands the solution of the inverse problem of heat conduction. 

Let us examine a unidirectional f iber composite and let us extract a representative volume containing one of 
the fibers and the matrix (Fig. 2). Under the assumption that the component TPC are independent of  the temperature 
for the extracted representative volume, the following system of equations can be written (i = 1, 2) 

OTi - = ~ i  ( 02T~ 1 OT~ ) 02rl  
c~ O------t- \ Or 2 + r Or ; + )~  ~c)z ~ , (2) 

T~ (0, z, r ) =  0, (3) 

OT1 ] =Lr2 0T2 i 
TllR~ = T~!R~, )~I ~ R~ ~ R~' 

c3T~ [ = 0, 
Or I1~o 

- -  2~ . c3T-----L-~ I = t qo, O < t <~ t~, 
~ Oz Iz=o (0, t > t u  

(4) 

(5) 

c?T~ ! = O. 
Oz Iz=~ (6) 

Let us average the temperature over the section for each component 

RB 

2 Ro 
f2 (~, Z) -- f T 2 (t, z, r) rdr. 

B 

a ~ T~ aT1 9 
)~zl Oz ~ c~ at = R--~ q*' 

2R~ 

Then (2) takes the form 

0 2 f% 0 7~ 
) ~  Oz 2 c,e c3t -- 

(7) 
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where 

q* = - -  ~ s  OT----!-~ [ 

Or V=~.. 

The Henry law [4] can be utilized in a linear approximation, and by substituting (1) into (7) we arrive at a system of 
interrelated equations: 

~ 0@~ Of'~ (8) 
Oz~ c~ --b?-- = ( -  ly+~ ~z~ ( ~  - -  ~0.), i = l,  2, 

where a~ = 2a/Rn;  a~ = 2(XRB/(Ro ~ --RB2). 
By using the Laplace transform in the time and the Fourier cosine transform in z the system of differential 

equations (8), (3), and (6) can be reduced to a system of algebraic equations for which, when solved, we have (i = 1, 2; 

r = qo [1 - -  exp (-- pt~)] (2=0 4- ) ~ ,  + c~p)/(pF), (9) 

where 

F : c  sc.~{(p+d) 2 - / 2 } ;  d=--B o + , a  o; Bo----- B1 4 -B2;  
2 

~zi 1 cr 
a~= ~ ; 2~z o=~z~4-a2;  a 0 =  ( a s + a 2 ) ;  B i =  - - ;  

C i T C~ 

P = (*a a 4- AB) 2 4- B s B~ ; 2 A a = a s - -  a,~ ; 2 a B := B:~ - -  B~ ; 
h 

b \ h ] "  

Applying the inverse Laplace and Fourier transforms to (9) we obtain the averaged relative temperature on the specimen 
reverse surface 

O= 1+ 1--[exp(--2Bot)(exp(2Bot,~)--l)]~C/(2Bo)-l- '~,{ ( -  1)----~n X 
tu n=; [cB t~ 

(10) 

• exp(- -  vh t ) [exp (vk tu ) - -  11 ( -  1 ) ~  (2ao+ f,*--Vh~) , 
L ~---1 U/~ 

where 

O = % / T m ;  T s =  Tl ( t ,  h)v4-7"2(t, h ) ( 1 - - v ) ;  

Tm qot~ rc ,,~2 (R_~ ~2; 
= ~ ;  - -  + c : R , ] / R o ,  ' ~ =  R o ]  hcef  cef :-= t o. tt~o R~ ) 2 2 

Ac = %f[c~ ~ + (1 - -  ~,)c~]/(c~ c~) - -  1 ; c, = c~ c~/cef; 

v n = d - [ - ( - - 1 ) k f ,  k =  1, 2; ~---~l(1--~:)4-X~v; 

~ = c s ( l - -  ~) + c~,:. 

As tu/to. 5 --, 0 it is possible to simplify (10) 

e = l  4- exp (--  2Bo /) ~c 4- (--1)~(fc~) -~ ~ e x p ( - - v k t ) •  
n = l  k ~ l  

We consider the specific heat of the components cl, c 2 and the specimen geometric characteristic to be known. To 
determine ~,1, A,~. and o~ we write the functional 

= rt n 2 
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Fig. 3. Time dependence of the partial 
derivatives of  the relative mean 
temperature of the specimen reverse 
surface with respect to the thermophysical 
characteristics Yi, Y = {'X~i, )~t2, ~}: 1) 
O0p/O~,:; 2) OOp/O)~,2; 3)O0/Oa. 

where Oe n is the experimental value of  the relative mean temperature of  the reverse surface of  the specimen at the time 
tn; Op n is the computed value of this quantity (according to (10)) for a certain set of  desired coefficients y = {;~:, )'z2, 
c~}. Determination of these coefficients reduces to a problem in minimization of the functional F [8]. 

Searching for the optimal vector Yop = {)M ~ ;~t2 ~ c~~ was realized by the Newton (NM) and Newton--Gauss 
(NGM) methods. 

1. NEWTON METHOD 

Three times t 1, t2, t 3 are selected in which F n is expanded in a Taylor series by limiting the latter to a linear 
approximation 

3 . } I ' r  ae ;  (ll) F. = 2 ( e ; - -  e~) i ~  ay~ ~y~ ' ~ = I, 2, 3, 

or in matrix form [O~OyO ] ~y = t,O, where 

[oo l 
0~2 am 

oe , 
O2~z &z 

( A)~zl 1 

AY = A~z~ ; 

A ~ 

A O =  y (F~)~/2 �9 

tOOl Solving (11), we have AYi = Di/D, where D = det L~-y ] �9 and D i is the determinant obtained from L~yy J by replacing 

elements of  the i- th column by the column of free terms t,O. 

2. NEWTON-GAUSS METHOD (MODIFIED NEWTON METHOD) 

When processing experimental data the NM can result in errors in the determination of the vector Ay. This is 
related to the fact that the dimensionality of  y governs the quantity of experimental points by which the vector Ay is 
constructed. In our case the dimensionality of  y is 3 and consequently three equations are used in the system (11). 
Evidently the more the experimental points that "operated" in the determination of  Ay, the smaller will be the influence 
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of experiment error on the convergence process. Let  us expand the NM to a greater quantity of  experimental points (N) 
as follows: 

3 i 

or in matrix form 

(Nx  3) 

Multiplying (12) by the transposed matrix r LOyJ~s• we obtain 

(12) 

[a W -ao e ' 

and solving the system obtained for Ay, we represent the desired coefficients in the form Ay i = Di0/D0, where D o = det 

[l l [oojl 
l Oy J . ~ , while Di il is the determinant obtained f rom D o by replacing the i - th  column by the column of  free 

terms I fa0t  ;1. 
LLayJ j 
The vector Ay = {A~,I, A;~=2, A(x} determines the direction of the descent. The search algorithm for the 

minimum of F has the following form: 
1) initial values of  Yo are selected; 
2) the Ay k (k = 0, 1, 2 . . . .  ) is evaluated; 
3) If  k --- 3n (n - 1, 2 . . . .  ), then we solve the optimization problem in the variable o~ for  A3~l = ASz2 = 0; 
4) i f  k = 3n (n = 1, 2 . . . .  ), then we solve the minimization problem in flk for  the function F(Yk + #kAYk), 

whereupon we find the magnitude of the step/~k and the point Yk + 1 = Yk + flkAyk; 
5) we perform the comparison: i f  F < ~, then Yk+l is the solution of  the problem, otherwise k = k + I; we 

continue the search further ,  starting with No. 2. 
Values computed by means of  (10), i.e., f rom the solution of the direct problem, were used --  to verify the 

inverse problem --  in the capacity of the experimental data Oe n. 
Two model composites MI and M2 were examined with the following TPC values; MI--Azl = 240 W/(m.K); 

A=2 = 30 W/(m.K); ~ = 8.2.104 W/(m2.K); M2 --A=x = 20 W/(m.K); )~=2 = 5 W/(m.K); ~ = 1.4.104 W/(mZ.K). The remaining 
TPC and the geometric parameters were taken identical: c 1 = c 2 = 0.3.107 J/(mZ.K), h = 0.003 m, and R e = 2R B = 0.0012 
m .  

Let us note that it is desirable to select the times {t 1, t2, t3} in the NM in the segment to. t = t i = to. 3 (i = 1, 2, 3) 
(see Fig. 1). The time dependence of the derivatives with respect to the variables A,.j, )~z2, a for  the function O is 
represented qualitatively in Fig. 3. All three derivatives aO/SAzi, i = 1, 2; aO/&x grow monotonically in the selected 
segment [to.l, to.s] , which favors convergence of the functional. 

It is obtained for  a broad class of  initial data that when the NM is applied the convergence (to 1% accuracy for 
AzI, Az2 and 2% accuracy for  c0 is assured for  k = 4 (a computing time on the order of  1 rain on an ES-1045 electronic 
computer). Analogous accuracy is achieved for the NGM for k = 8. In this case the computed values of Oe i with 
rounding of f  after  the fourth place were used. A more rapid convergence is achieved for  initial data less than the 
desired, i.e., for "downward" motion. 

k = 4  
1) y o = ( 1 2 0 ;  42;  3 .2 .105 ) - - -~ (241 ;  29.7; 8.35.10,) (Nit); 

k ~ 4  
2) Yo = (150 ; 20 ; 3 .5 -105) - - -~  (239.8 ; 30,05 ; 8:2. I0 ~) (M1) ; 

3) Yo=( lO;  2;  0.8.10 ~) k=~(20.3;  4.93; 1.43.10 ~) (M2). 

For "experimental" data Oe i obtained with rounding of f  after the third place, the NGM has an advantage over 
the NM. For instance, for  identical initial coefficients Yo = (31; 2, 0.3.104) the NM results in the point Y4 = (19.8; 5.1; 
1.2.104) (for the material M2); the error is 2% for values of  the matrix heat conductivity and 11% for  the heat 
elimination coefficient  ~. For the NGM the result is the point Y6 = (19.8; 5.04; 1.33.104) and in this case the error 
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is 1% for the matrix heat conductivity and 2% for o~. Analogous results hold for the material MI also. Therefore, when 
operating with experimental data the NGM will have advantages over the NM in connection with the utilization of 
greater information for the determination of the descent vector Ay i. 

This method can also be applied to laminar composites, for which the problem (2)-(6) should be solved in plane 
geometry. The form of ai (i = l, 2): ai = Ai/6i changes here, where 6 i is the thickness of the i-th layer of the composite. 
For spatially bonded materials, partial homogenization of the medium should be performed to extract two components: 
the fibers whose axes are perpendicular to the specimen surface and the homogeneous medium consisting of the matrix 
and the remaining bond [2]. 

It is assumed in the mathematical model under consideration, as in the classical "burst" method, that the material 
TPC can depend sufficiently strongly on the temperature and replacement of the nonlinear nonstationary heat 
conduction model by a linear mathematical model results in errors in determining the desired characteristics. It is shown 
in [9] that the error originating in the determination of a by a classical method of "burst" can be 11.5%. Consequently, 
the proposed inverse problem can be applied for composites in a temperature band in which the compon,nt TPC 
depend weakly on the temperature. Unfortunately, quantitative criteria were not obtained for this temperature band. 

Further development of the proposed method for the determination of TPC of composite components s lould be 
directed toward the development of a nonlinear nonstationary heat conduction model of the "burst" method ~vith the 
temperature dependence of the component TPC taken into account. 

NOTATION 

z, r, space variables; t, time; Ti(t, z, r), temperature of the i-th component; O, relative mean temperatme of the 
reverse specimen surface; qij, thermal flux density from the i-th component to the j-th; cz, coefficient of heat transfer 
between components; c i, Ari, Azi, coefficients of volume specific heat, radial and axial heat conductivity; R 8, fiber 
radius; R o, effective radius of matrix; h, specimen thickness; N, quantity of experimental points; qo, heat flux density 
of the laser radiation; t u, duration of the laser burst; p, n, Laplace and Fourier cosine transform parameters. 
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